Increasingly Heavy Farm Vehicles Are Crushing Soil Health
Tractors and other machinery used on farms have grown enormously heavier over the past 60 years, now weighing as much as the heaviest dinosaurs. How are soils handling the pressure? Not well.
Increasingly Heavy Farm Vehicles Are Crushing Soil Health
Tractors and other machinery used on farms have grown enormously heavier over the past 60 years, now weighing as much as the heaviest dinosaurs. How are soils handling the pressure? Not well.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
What does a modern combine harvester and a Diplodocus have in common? One answer, it seems, may be their big footprints on the soil. A new study led by researchers from Sweden and Switzerland has found that the weight of farming machinery today is approaching that of the largest animals to have ever roamed the Earth—the sauropods.
Depicted as the giant, friendly “veggiesaurus” in the movie Jurassic Park, sauropods were the biggest of the dinosaurs. The heaviest were thought to weigh in at around 60 tonnes—similar to the weight of a fully laden combine harvester. Tractors and other machinery used on farms have grown enormously heavier over the past 60 years as intensive, large-scale agriculture has become widespread. A combine harvester is almost ten times heavier today than it was in the 1960s.
The weight of animals or machines matters because soils can only withstand so much pressure before they become chronically compacted. They may not look it, but soils are ecosystems containing fragile structures—pores and pathways which allow air to circulate and water to reach plant roots and other organisms. Tires, animal hooves and human feet all apply pressure, squashing the pores, not just at the surface but deeper down too.
Soil compaction can cut plant growth and harvests, and increase the risk of floods as water runs off the land and reaches waterways more quickly. The scientists involved in the new study took a look at how much compaction is being caused by these giant farming machines and compared it with the sauropods who lived over 66 million years ago. They found both to be big culprits of compaction.
Under pressure
The study points out that as the weight of farm machinery has grown, tire sizes have ballooned too, adjusting the area of contact between the vehicle with the soil to reduce the pressure on the surface and help avoid sinking. It seems that animals evolved with a similar strategy—increasing foot size with weight to help avoid sinking into the soil.
Overall, pressure at the soil surface has remained fairly constant as farm machinery has gained weight. But the authors suggest that stresses on the soil continue to increase below the surface and penetrate deeper as vehicles (or animals) get heavier. Farm machinery today (and the sauropods of the past) are now so heavy that they irreparably compact soil below the first 20 centimeters, where it isn’t tilled. Aside from restricting how deep the roots of crops can grow to seek water and nutrients further down in the soil, this can also create low-oxygen conditions that are not good for plants or the organisms they share the soil with.
Where did the dinosaurs go for dinner?
This creates a “sauropod paradox,” as the researchers call it. The dinosaurs and the loads transmitted through their feet were so large that they would have likely caused significant subsurface damage to soils wherever they roamed, potentially destroying the soil’s ability to support the plants and ecosystems they would have relied on as their food source.
The image of sauropods roaming widely and foraging freely as depicted by Jurassic Park seems unlikely, as they would have had an unsustainable influence on their environment. So how did they survive?
The scientists behind the study speculate that they may have kept to well-trodden paths, limiting their impact while browsing the canopy with their long necks. How exactly a sauropod could live in equilibrium with the soil remains a mystery for now.
Big food for thought
A more pressing conundrum is how to reconcile soil compaction by farming vehicles with sustainable food production today. The risk of soil compaction varies with the type of machinery and the way it’s used, as well as the type of soil and the moisture bound up in it.
The study estimates that 20 percent of croplands globally are at high risk of losing productivity because of subsoil compaction by modern agricultural vehicles, with the highest risks in Europe and North America, where it’s relatively moist and there are more large farms using the largest machines. Clearly, this is an issue in arable landscapes, but the problem also extends to grasslands where silage is baled, and urban landscapes where the movement of construction vehicles on green space is not well controlled.
The authors call for design changes to machinery to help maintain the soil’s structure. We suggest another option. To reduce their impact on the soil, we could reduce the need for such large machines in the first place by growing food using smaller machines on smaller parcels of land, particularly in high-risk zones. Finding ways to break up vast monoculture landscapes makes sense for many other reasons. For example, wildflower field margins, hedgerows and trees can help sequester carbon, manage water quality and support biodiversity.
Soil can only withstand so much pressure—whether from compaction or other threats such as continual harvesting, erosion or pollution. Humans must act to reduce pressures on soils, or we risk going the way of the dinosaurs.
Jess Davies is a professor in sustainability at Lancaster University and the director of the Centre for Global Eco-Innovation. She is an interdisciplinary researcher focused on nature-based solutions that help us tackle climate change and environmental risks, and create healthier, sustainable and resilient landscapes, cities, and food systems. John Quinton has spent the last 30 years working on understanding and predicting the soil erosion processes that degrade soil functions, soil monitoring, how we can protect soils better and how soils can be managed to mitigate flooding and the pollution of surface waters. He co-leads LEC’s Sustainable Soils Research Group.
Follow us
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Want to republish a Modern Farmer story?
We are happy for Modern Farmer stories to be shared, and encourage you to republish our articles for your audience. When doing so, we ask that you follow these guidelines:
Please credit us and our writers
For the author byline, please use “Author Name, Modern Farmer.” At the top of our stories, if on the web, please include this text and link: “This story was originally published by Modern Farmer.”
Please make sure to include a link back to either our home page or the article URL.
At the bottom of the story, please include the following text:
“Modern Farmer is a nonprofit initiative dedicated to raising awareness and catalyzing action at the intersection of food, agriculture, and society. Read more at <link>Modern Farmer</link>.”
Use our widget
We’d like to be able to track our stories, so we ask that if you republish our content, you do so using our widget (located on the left hand side of the article). The HTML code has a built-in tracker that tells us the data and domain where the story was published, as well as view counts.
Check the image requirements
It’s your responsibility to confirm you're licensed to republish images in our articles. Some images, such as those from commercial providers, don't allow their images to be republished without permission or payment. Copyright terms are generally listed in the image caption and attribution. You are welcome to omit our images or substitute with your own. Charts and interactive graphics follow the same rules.
Don’t change too much. Or, ask us first.
Articles must be republished in their entirety. It’s okay to change references to time (“today” to “yesterday”) or location (“Iowa City, IA” to “here”). But please keep everything else the same.
If you feel strongly that a more material edit needs to be made, get in touch with us at [email protected]. We’re happy to discuss it with the original author, but we must have prior approval for changes before publication.
Special cases
Extracts. You may run the first few lines or paragraphs of the article and then say: “Read the full article at Modern Farmer” with a link back to the original article.
Quotes. You may quote authors provided you include a link back to the article URL.
Translations. These require writer approval. To inquire about translation of a Modern Farmer article, contact us at [email protected]
Signed consent / copyright release forms. These are not required, provided you are following these guidelines.
Print. Articles can be republished in print under these same rules, with the exception that you do not need to include the links.
Tag us
When sharing the story on social media, please tag us using the following: - Twitter (@ModFarm) - Facebook (@ModernFarmerMedia) - Instagram (@modfarm)
Use our content respectfully
Modern Farmer is a nonprofit and as such we share our content for free and in good faith in order to reach new audiences. Respectfully,
No selling ads against our stories. It’s okay to put our stories on pages with ads.
Don’t republish our material wholesale, or automatically; you need to select stories to be republished individually.
You have no rights to sell, license, syndicate, or otherwise represent yourself as the authorized owner of our material to any third parties. This means that you cannot actively publish or submit our work for syndication to third party platforms or apps like Apple News or Google News. We understand that publishers cannot fully control when certain third parties automatically summarize or crawl content from publishers’ own sites.
Keep in touch
We want to hear from you if you love Modern Farmer content, have a collaboration idea, or anything else to share. As a nonprofit outlet, we work in service of our community and are always open to comments, feedback, and ideas. Contact us at [email protected].by Jess Davies and John Quinton, Modern Farmer
May 29, 2022
Modern Farmer Weekly
Solutions Hub
Innovations, ideas and inspiration. Actionable solutions for a resilient food system.
ExploreShare With Us
We want to hear from Modern Farmer readers who have thoughtful commentary, actionable solutions, or helpful ideas to share.
SubmitNecessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and are used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies.
When Christo and Jean Claude were planning the Running Fence fence across the hills of Sonoma Cointy Cali and then down into the ocean they invented a machine that was light on the land to set the poles to support the cloth fence.The cloth was not useful as airbag fabric so he bought all of it. When the art installation was over he sold the fabric: months later I attended a luncheon and the fabric was used to make rooms and keep the wind away. I never did read what the pole-setting machines were reused for. Maybe it is time… Read more »