A New Start-Up Hopes to Develop Faster-Growing Crops”Without Genetic Modification
Beneficial microbes are the key.
We talked with BioConsortia, an agricultural biotech company headquartered in Davis, Calif., that’s using a recently patented way to identify the specific combination of plant microbes to help improve crop yields in corn, wheat, and soybeans. It says that by 2017, it will be able to commercialize its first seed treatments containing the microbe combo that would enable a plant use less fertilizer yet get comparable yields.
The technology seems like what a plant breeder might do if collaborating with a microbiologist on speed.
One skeptic points out that it can be difficult to grow and mass produce such a group of microbes in the lab, so it’s not a done deal. Other companies – such as Novozymes and Monsanto – are also working with microbes. If it all pans out, it could change the face of agriculture as we know it by providing farmers with a natural alternative to genetically modified corn, soy, and wheat.
The process, dubbed Advanced Microbial Selection (AMS), inspired Khosla Ventures to invest millions in two rounds of BioConsortia’s R&D funding over the last four years. AMS scouts out each crop’s “dream team” of five to seven microbes, or microscopic organisms, that work together to boost a plant’s growth. (These microbes live both within the plant and in the soil.)
The technology seems like what a plant breeder might do if collaborating with a microbiologist on speed.
“It turns the traditional model – where microbiologists test microbes one by one – on its head,” says BioConsortia’s CEO Marcus Meadows-Smith. A serial biotech executive with a background in business and genetics, Meadows-Smith joined BioConsortia after a stint as the head of Bayer’s biological pest management division.
Here’s how the process (which was just patented last month) works, according to Meadows-Smith: First, scientists seek out the best-performing plants living in a variety of soil environments around the world, including ones stressed by drought, desert, cold, and wet conditions. Then they conduct DNA sequencing of the plants and the soils to determine what kinds of microbes are present.
Next, back in Bioconsortia’s California growth chambers, they root these plants in their original soils, then into normal and stressed soils. After observing which plants are thriving and which are faring poorly, they conduct another DNA sequencing round in the plants and the surrounding soils. The purpose is to identify all of the microbes hanging around. Some help to speed up growth by making nutrients more accessible, while others can defend against pathogens that might be present. (Think of the group as being there to help and protect – like a celebrity entourage of personal assistants and bodyguards.)
By looking closely at that entourage of microbes (collectively known as the plant’s microbiome), and comparing which specific microbes are present in the plants that are doing well with the ones those that are faring the worst, BioConsortia says it can nail down each crop’s “dream team” for each soil environment tested.
“We’re looking for that unique combination to keep the plants healthy – even with the ability to recover from drought and staving off the effects of a pathogen,” Meadows-Smith said. “The beneficial microbes have not been documented over the years, compared to the pathogens.”
To date, the company has performed experiments on corn, soybeans, and wheat. It’s in its second year of independent/third-party field trials that are testing the seed treatments (comprising the microbial “dream teams”) it has manufactured for these crops.
But even though Meadows-Smith says that the first year of field trials show that its approach increases yield by 6 percent (compared to an average of an <2 percent increase in yield for a genetically modified or hybrid approach) and a double-digit increase in stressed crops, he declined to show results or provide more details to Modern Farmer, citing confidentiality agreements.
Meadows-Smith says that the improved varieties include corn that produce greater yields, utilize fertilizer more efficiently, and are more drought tolerant, as well as wheat and soy that produce more. In the coming months, BioConsortia will start field tests for tomatoes and leafy vegetables.
“Using microorganisms is definitely the way of the future as it’s more environmentally sustainable [compared to using chemicals],” says Kari Dunfield, a professor of soil ecology at Ontario’s University of Guelph, who studies how agricultural practices affect microbial communities in soils. “The approach makes sense, as we know that microorganisms interact with each other and are synergistic.”
But the expert does express some reservations about BioConsortia’s process. “We know that it’s still really hard to grow those organisms in the lab, so that step will be tricky,” Dunfield says. “It’s one thing to know what organisms are there with the DNA, but when you have the DNA you don’t have enough to grow the organism, so that’s the rate-limiting mechanism.”
She also points out that since microbes are living organisms, they’re unpredictable – which adds a more complex aspect to production compared to working with chemicals. “When you’re selling a mixture [of microbes], you have to make sure they’re not outcompeting each other when you sell it to the farmer.”
A few years from now, Meadows-Smith wants to use Advanced Microbial Selection method to address food security for a growing world population.
But Meadows-Smith insists that BioConsortia’s approach could save millions of dollars. He says it takes $25 million to bring a microbial seed treatment to market, $60 million to do the same for a biopesticide (due to the global registration process), and $135 million for genetically modified trait (according to Peter W.B. Phillips, a professor of public policy at the University of Saskatchewan).
Advanced Microbial Selection can also speed up the research phase, Meadows-Smith claims, so products can get to market in about five years, compared to DuPont’s estimate of the 13 years it takes genetically modified crops to get to market.
“There is a long R&D phase [for GM crops], followed by field trials, field multiplication, and registration,” he said.
Meadows-Smith says that scientists first came up with the idea five years ago at BioDiscovery (BioConsortia’s subsidiary company in New Zealand) while conducting contract research for companies like Syngenta, Monsanto, and Bayer. “They had brainstorming sessions to find ways to improve the speed and efficiency of their discovery process,” Meadows-Smith said. “It was to this end that they had the breakthrough to think of this as a plant phenotype (or plant breeding question) and solution rather than a microbial question.”
He cites more dramatic numbers: The company screens 100,000 microbes in nine months, he says, while a conventional approach would take three to four years.
BioConsortia wants to sell the microbial seed treatments (which are applied directly to the seed) to distributors. If all goes well with the second year of field trials, Meadows-Smith says that a biofertilizer seed treatment – one that would need less fertilizer for comparable yields – will be commercialized by 2017.
But he doesn’t think the approach will necessarily replace other methods – such as genetic modification – across the board.
Currently, the company is focusing on the in the European and North American market. Next, Meadows-Smith says he wants to expand BioConsortia’s efforts to Latin America, Brazil and Argentina.
And a few years from now, he wants to use Advanced Microbial Selection method to address food security for a growing world population – something that’s projected to be a problem in the coming decades given stresses on the environment including drought, lack of arable land to grow sufficient amounts of food, environmental pollution, and climate change.
Meadows-Smith says that BioConsortia’s approach can develop crops that can create more harvestable yield, deposit more protein into wheat, or select for a microbiome that will improve the sugar content of plants.
“A few years from now we’d like to work on [applying this to] cassava, a staple carbohydrate for many parts of Africa,” he said.
Follow us
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Want to republish a Modern Farmer story?
We are happy for Modern Farmer stories to be shared, and encourage you to republish our articles for your audience. When doing so, we ask that you follow these guidelines:
Please credit us and our writers
For the author byline, please use “Author Name, Modern Farmer.” At the top of our stories, if on the web, please include this text and link: “This story was originally published by Modern Farmer.”
Please make sure to include a link back to either our home page or the article URL.
At the bottom of the story, please include the following text:
“Modern Farmer is a nonprofit initiative dedicated to raising awareness and catalyzing action at the intersection of food, agriculture, and society. Read more at <link>Modern Farmer</link>.”
Use our widget
We’d like to be able to track our stories, so we ask that if you republish our content, you do so using our widget (located on the left hand side of the article). The HTML code has a built-in tracker that tells us the data and domain where the story was published, as well as view counts.
Check the image requirements
It’s your responsibility to confirm you're licensed to republish images in our articles. Some images, such as those from commercial providers, don't allow their images to be republished without permission or payment. Copyright terms are generally listed in the image caption and attribution. You are welcome to omit our images or substitute with your own. Charts and interactive graphics follow the same rules.
Don’t change too much. Or, ask us first.
Articles must be republished in their entirety. It’s okay to change references to time (“today” to “yesterday”) or location (“Iowa City, IA” to “here”). But please keep everything else the same.
If you feel strongly that a more material edit needs to be made, get in touch with us at [email protected]. We’re happy to discuss it with the original author, but we must have prior approval for changes before publication.
Special cases
Extracts. You may run the first few lines or paragraphs of the article and then say: “Read the full article at Modern Farmer” with a link back to the original article.
Quotes. You may quote authors provided you include a link back to the article URL.
Translations. These require writer approval. To inquire about translation of a Modern Farmer article, contact us at [email protected]
Signed consent / copyright release forms. These are not required, provided you are following these guidelines.
Print. Articles can be republished in print under these same rules, with the exception that you do not need to include the links.
Tag us
When sharing the story on social media, please tag us using the following: - Twitter (@ModFarm) - Facebook (@ModernFarmerMedia) - Instagram (@modfarm)
Use our content respectfully
Modern Farmer is a nonprofit and as such we share our content for free and in good faith in order to reach new audiences. Respectfully,
No selling ads against our stories. It’s okay to put our stories on pages with ads.
Don’t republish our material wholesale, or automatically; you need to select stories to be republished individually.
You have no rights to sell, license, syndicate, or otherwise represent yourself as the authorized owner of our material to any third parties. This means that you cannot actively publish or submit our work for syndication to third party platforms or apps like Apple News or Google News. We understand that publishers cannot fully control when certain third parties automatically summarize or crawl content from publishers’ own sites.
Keep in touch
We want to hear from you if you love Modern Farmer content, have a collaboration idea, or anything else to share. As a nonprofit outlet, we work in service of our community and are always open to comments, feedback, and ideas. Contact us at [email protected].by Kristine Wong, Modern Farmer
November 10, 2015
Modern Farmer Weekly
Solutions Hub
Innovations, ideas and inspiration. Actionable solutions for a resilient food system.
ExploreExplore other topics
Share With Us
We want to hear from Modern Farmer readers who have thoughtful commentary, actionable solutions, or helpful ideas to share.
SubmitNecessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and are used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies.
i love farming and women!!!!!!!!!!!!!!!!!!!!!!!!!!!!!