Can Science Produce a Longer Lasting Christmas Tree?
LED Christmas lights make the needles hold on longer, and other discoveries from the world’s only Christmas tree research center.
Of the American households that put up a tree, more than 80 percent put up a fake one, about double the number from 25 years ago, according to Gallup. What’s worse – if you’re a Christmas tree farmer, that is – is that fake trees easily last a decade or more, so for each one purchased today, that’s 10 or more real trees that won’t be sold in the years to come.
LED lighting had the most positive effect on needle drop by far; the frequency of light produced by red and white LED bulbs was the most beneficial.
A group of Christmas tree farmers in Canada is fighting back, however, staking their hopes on a new and improved variety of balsam fir developed at the Christmas Tree Research Center in Bible Hill, Nova Scotia. And this Christmas, plant scientists at this Dalhousie University institution – the only such facility in the world – are unveiling the fruits of their labor: the SMART Balsam.
Unlike most food crops and ornamental plants, which have been bred for centuries to improve the qualities that humans care about (like bigger flowers and sweeter fruit), relatively little breeding work has been done on Christmas trees until now.
“Christmas tree breeding has not been very advanced in the past,” says Dr. Raj Lada, director of the Christmas Tree Research Center. “Our goal was to generate the perfect tree – what we call a SMART tree – and provide the plant material to Nova Scotia growers.”
It Starts With a Christmas Favorite
Balsam firs, known for their deep green needles and delicious fragrance, are a Nova Scotia specialty and one of the top-selling Christmas trees in Canada. They also make up a large portion of the 1.7 million Christmas trees Canada exports annually, many of which end up in American living rooms; some are shipped as far as Bangkok and Dubai.
The problem is that balsam firs, like all of the species used for Christmas trees (and like any wild plant species, for that matter), are irregular in form. Some grow shorter and fatter than others; some are taller and thinner; some are dense, while others are sparse; some have straight, evenly distributed branches, some are rather deformed-looking; and some start shedding needles shortly after they are cut, while others stay fresh and green through the new year without littering all over your carpet.
The SMART Balsam has none of these irregularities, because it is a clone. “Most growers plant their trees from seeds, usually obtained from cones where there is no controlled pollination, which means the genetics of every seedling are unique, so each tree behaves differently,” Lada explains.
SMART is an acronym for a mouthful of plant science jargon: senescence modulated abscission regulated technology. To put it more simply, says Lada, SMART trees are everything you ever wanted in a Christmas tree: picture-perfect architecture, strong aroma, blue-green color, and excellent needle retention.
These trees are also smart in a business sense. Once the trees are commercially available, the Christmas Tree Council of Nova Scotia, a local growers group, plans to roll out a marketing campaign geared for the millennial set, whom they’re thinking are likely choose a good-looking tree with a catchy-looking label that reads “SMART” over a deformed-looking no-name brand. They’re also hoping would-be Christmas tree shoppers will even fork over a few extra bucks for it – and be seduced away from the artificial tree aisle by the promise of a hipper live tree, produced by tech-savvy scientists.
The anti-GMO crowd can rest assured knowing that the SMART Balsam is not a product of genetic engineering, says Lada, though he and his team employed the latest tricks in genomics science to produce it, along with old-fashioned breeding techniques.
Here’s how:
Making a Christmas Tree SMART
First, thousands of balsam firs were screened for the ideal traits (form, needle retention, fragrance, etc). Then, the genetic markers for these traits were identified through transcriptomics analysis – a technique that allows researchers to understand how different genes are expressed in differing environmental conditions. Armed with this information, the team used traditional hybridization methods to create enhanced balsam fir varieties with the desired traits, and then cloned them to ensure that every tree would be identical.
Cloning in this case is less frankensteinian then it sounds – it’s akin to a gardener “taking cuttings,” and is the way that any camellia or rosemary bush in your yard would have been propagated.
The biggest feat in all this, says Lada, was to identify the genes responsible for needle drop, the trait of live trees that consumers find most irksome. It’s not just one gene that’s responsible for needle drop, he says, there are many, and the trick was to learn how the genetics of needle drop interact with other variables, ranging from external conditions, like temperature and humidity to biological factors, such as photosynthetic and hormonal processes.
“This was the first time that such a complex set of relationships have been investigated for a single physiological dysfunction in Christmas trees – in this case post-harvest needle loss.” says Lada. “It is such a complex process, it’s not just a single factor.”
Balsam firs typically hold their needles for six or seven weeks after being cut, while the SMART tree holds onto the them for three months or more. Lada sees this as a huge boon to growers, as Christmas trees destined for export are cut as early as the first week of October in Nova Scotia.
Don’t expect to erect one in your living room any time soon, though. Growers in Nova Scotia will plant the first SMART trees in the coming year, and it will be at least five years before they mature to Christmas tree size and make their retail debut.
Do the Lights on Your Tree Matter?
One unexpected discovery to come out of the research was the finding that LED Christmas lights have a highly beneficial effect on needle retention. Because photosynthesis, which continues even after a Christmas tree is cut, helps the needles stay fresh and attached to the tree, the team evaluated the impact of a variety of lighting schemes, including LEDs, incandescent bulbs, and the fluorescent lights common in stores where many Christmas trees are sold, as well as the impact of darkness from when the trees are being shipped. LED lighting produced the best results by far, but Lada found that the frequency of light produced by red and white LED bulbs was the most beneficial.
“The red and white spectrums are the ones that are utilized by the tree at a chloroplast level, allowing it to synthesize carbohydrates and sugars,” says Lada. “And that provides the tree with energy to preserve the needles for a longer period.”
That’s good news for the planet, as LED Christmas lights use 80 to 90 percent less energy than the old-fashioned incandescent light strands. That benefit is not exclusive to SMART trees, however – any Christmas tree will last longer with LED lights. And unfortunately, SMART trees may turn out to be less eco-friendly than their no-name competitors.
One of Lada’s hopes was that he could unlock the genetics of pest and disease resistance in balsam firs, in order to provide growers with more robust trees that would require less pesticides. But it turned out that breeding for genetic resistance to needle drop ran counter to breeding for pest resistance. So far, it appears that those traits are incompatible on a genetic level, though Lada intends to keep trying. “It’s taking longer than we expected to come out with a tree that will be eco-friendly, so growers don’t have to apply as much agrochemicals,” he says. That will have to wait until SMART balsam version 2.0.
SaveSave
Follow us
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Want to republish a Modern Farmer story?
We are happy for Modern Farmer stories to be shared, and encourage you to republish our articles for your audience. When doing so, we ask that you follow these guidelines:
Please credit us and our writers
For the author byline, please use “Author Name, Modern Farmer.” At the top of our stories, if on the web, please include this text and link: “This story was originally published by Modern Farmer.”
Please make sure to include a link back to either our home page or the article URL.
At the bottom of the story, please include the following text:
“Modern Farmer is a nonprofit initiative dedicated to raising awareness and catalyzing action at the intersection of food, agriculture, and society. Read more at <link>Modern Farmer</link>.”
Use our widget
We’d like to be able to track our stories, so we ask that if you republish our content, you do so using our widget (located on the left hand side of the article). The HTML code has a built-in tracker that tells us the data and domain where the story was published, as well as view counts.
Check the image requirements
It’s your responsibility to confirm you're licensed to republish images in our articles. Some images, such as those from commercial providers, don't allow their images to be republished without permission or payment. Copyright terms are generally listed in the image caption and attribution. You are welcome to omit our images or substitute with your own. Charts and interactive graphics follow the same rules.
Don’t change too much. Or, ask us first.
Articles must be republished in their entirety. It’s okay to change references to time (“today” to “yesterday”) or location (“Iowa City, IA” to “here”). But please keep everything else the same.
If you feel strongly that a more material edit needs to be made, get in touch with us at [email protected]. We’re happy to discuss it with the original author, but we must have prior approval for changes before publication.
Special cases
Extracts. You may run the first few lines or paragraphs of the article and then say: “Read the full article at Modern Farmer” with a link back to the original article.
Quotes. You may quote authors provided you include a link back to the article URL.
Translations. These require writer approval. To inquire about translation of a Modern Farmer article, contact us at [email protected]
Signed consent / copyright release forms. These are not required, provided you are following these guidelines.
Print. Articles can be republished in print under these same rules, with the exception that you do not need to include the links.
Tag us
When sharing the story on social media, please tag us using the following: - Twitter (@ModFarm) - Facebook (@ModernFarmerMedia) - Instagram (@modfarm)
Use our content respectfully
Modern Farmer is a nonprofit and as such we share our content for free and in good faith in order to reach new audiences. Respectfully,
No selling ads against our stories. It’s okay to put our stories on pages with ads.
Don’t republish our material wholesale, or automatically; you need to select stories to be republished individually.
You have no rights to sell, license, syndicate, or otherwise represent yourself as the authorized owner of our material to any third parties. This means that you cannot actively publish or submit our work for syndication to third party platforms or apps like Apple News or Google News. We understand that publishers cannot fully control when certain third parties automatically summarize or crawl content from publishers’ own sites.
Keep in touch
We want to hear from you if you love Modern Farmer content, have a collaboration idea, or anything else to share. As a nonprofit outlet, we work in service of our community and are always open to comments, feedback, and ideas. Contact us at [email protected].by Brian Barth, Modern Farmer
December 19, 2016
Modern Farmer Weekly
Solutions Hub
Innovations, ideas and inspiration. Actionable solutions for a resilient food system.
ExploreExplore other topics
Share With Us
We want to hear from Modern Farmer readers who have thoughtful commentary, actionable solutions, or helpful ideas to share.
SubmitNecessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and are used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies.